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Abstract

A new structural modeling and analysis method, the
Distributed Transfer Function Method (DTFM), is
presented for the applications of space gossamer
structures. The method has certain unique features
that make it suitable for gossamer space structures.

With the DTFM, some problems that are difficult to
deal with by other methods can be readily tackled.

Examples of this kind of problems include buckling
and post-buckling of extremely long booms with
geometric and material imperfections, dynamics of
long booms with non-uniform cross-sections,
dynamics of spinning space structures (gyroscopic
effect), and structures with distributed damping. The
proposed DTFM is computational efficient, and
yields highly accurate results. By the DTFM-based
analysis, optimization of a passive vibration control
system for an inflatable reflectarray antenna is
studied; sensitivity analysis with respect to deviations
of bending stiffness with very large length to
diameter ratio is investigated. Several examples are
provided to show the applications and computational
efficiency of the DTFM. In addition, future research
directions are discussed.

1. Introduction
Space gossamer systems are generally composed of

supporting structures formed by highly flexible, long
tubular elements and pre-tensioned thin-film
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membranes. Shown in Figures 1 and 2 are two examples
of gossamer structures—inflatable sunshield and solar
sail, which consist of several inflatable booms and single
or multiple layers of membrane. Gossamer systems offer
order-of-magnitude reductions in mass and launch
volume, and will revolutionize the architecture and design
of space flight systems that require large in-orbit
configurations and apertures. A great interest has been
generated in recent years in flying gossamer systems on
near-term and future space missions [1].

Figre 1. Inflatable sunshield

Fiure 2. Solar sail
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Modeling, analysis, and optimization are essential to
the success of development and deployment of
gossamer structures. These tasks, however, are
unique and extremely complicated, involving a
variety of issues such as formation and effects of
wrinkles in tensioned membranes, synthesis of
tubular and membrane elements into a complete
structural system, buckling analysis of inflatable
boom components with material and geometric
imperfections, and optimization design with non-
uniformly distributed boom structures. Because of the
above-mentioned difficulties, general-purpose finite-
element structural analysis codes are not ready for
reliable analysis and optimization of such systems.
This has led to an urgent need for the development of
new structural modeling and analysis capabilities that
are specifically suitable for gossamer structures [2].
The Distributed Transfer Function Method (DTFM)
presented herein can potentially meet this need [3, 4].

Decomposihon
— -

g ———

Assembly

Figure 3. Decomposing and assembling of a
gossamer structure

There are three aspects that make the DTFM
distinctively suitable for simulation of gossamer
structures.

First, the DTFM models a gossamer structure
with a minimum number of nodes. This is done
by decomposing the structure only at those
points where multiple structural components are
connected, and by keeping each component as
large as possible; see Figure 3 for a
demonstrative example. A gossamer structure is
usually composed of several very long tubular
components as well as several layers of
membranes. Those basic building blocks are
connected to each other at a small number points.
As a result, the DTFM models the gossamer
structure with a small number of unknowns, and
deals with matrices of low order. Furthermore,
the DTFM gives closed form analytical or semi-
analytical solutions, which renders the DTFM-
based analysis results more reliable.

Second, due to its unique analytical capability of
describing local variations of material and geometric
properties of structures, the DTFM can be employed
to investigate the sensitivities of a structure to the
material imperfections or geometrical imperfections.
In order for the finite element method (FEM) to
investigate the impacts of material or geometrical
imperfections, numerous elements have to be
employed by a model. Consequently, results might be
overwhelmed by numerical inaccuracies induced by
numerous elements.

Third, the DTFM is convenient in handling structural
systems with passive and active damping, gyroscopic
effects, embedded smart material layers as sensing
and actuating devices, and feedback controller. On
the other hand, commercially finite element codes are
not readily applicable to those systems. So, this
feature of the DTFM allows convenient re-design and
improvement of gossamer systems.

The remainder of the paper is arranged as follows. The
general process of the DTFM is first presented. An
example of optimization analyses with DTFM follows.
Sensitivity analysis procedure with respect to geometrical
imperfection of a boom will then be discussed. Several
examples of the DTFM-based modeling and analysis will
be provided to show the sensitivity analysis process as
well as the calculation efficieney of DTFM.

2. Process of Distributed Transfer Function Method

2.1 Decomposition of a Complex Structure

In a DTFM-based modeling and analysis process, a
complex structural system is first decomposed into
several structural components (substructures). Figure 3
illustrates the idea of how a structure is decomposed into
substructures and assembled later on. Unlike the FEM
approach that needs to further divide the substructures
into small elements, the DTFM approach treats each
substructure as a single component. Therefore, the
DTFM approach leads to a much smaller number of
unknowns to be determined. The governing differential
equations of the substructures are then Laplace-
transformed (with respect to time). Dynamic stiffness
matrices, which include the frequency as a variable, can
be established based on Distributed Transfer Function
solutions and systematically assembled to form the
original structure. Unlike the FEM, the DTFM gives not
only displacements, but also higher order derivatives
(strains and stresses) with closed-form solutions that
precisely describe the behaviors of the structure.

2.2 State Space Form of a One-Dimensional Distributed
Parameter System
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Without loss of generality, one-dimensional
components will be used here to show the DTFM
modeling process. (The method has been successfully
applied to two- and three-dimensional structural
components.)

In the local coordinate system, the displacements
ui(x,t) of a single one-dimensional distributed

component are governed by linear partial differential
equations,

n N o 2 )oMui(x)
agy +big —+ Cii — |—— = fi(%,1) 5
jz:lkgo( ijk ijk ot ijk 8t2 an 1( )
xe(0,L), t=0, i=1-,n. ey

Here n is the number of differential equations (which
is the same as the number of the unknown

displacement functions u;j, j=1-,n), Nj is the
highest order of differentiation of u; with respect to
x, fi(x,t) is the external disturbance, ajj , bjjy, and
cijc are constants, and L is the length of the one-
dimensional component. Coefficients ajj , by, and
cijc represent inertia, damping, distributed constraint

(e.g., elastic foundation), gyroscopic term, axial load,
etc. Equations (1) represent various one-dimensional
continua such as beam, frame, truss, rotating shaft,
and etc.

Equations (1) are Laplace transformed with respect to
time (t) and expressed as,

n N; dkti(x,s) -
>~ 2 Dy ——Jk— =fi(x,s),
j=1k=0 x
xe(0,L), i=1-,n, )
with
2
Dijk = (a,-jk +biij+ Ciij ) (3)
Where the over-bar denotes the Laplace

transformation, s is the complex variable of the
Laplace domain and zero initial conditions have been
assumed.

Equation (3) is cast into a state space form,
d
&TI(X, S) = F(S)n(xa S) + Q(X, S) B X € (O’ L) . (4)

In equation (4), n(x,s) is so-called the state space
vector.

2.3 Distributed Transfer Functions

Assume the boundary conditions of this component are
given by the equation,

Mn(0,s) + Nn(L,s) = 1(s) . (5)
In equation (5), M and N matrices are named as boundary
selection matrices. Entries of these two matrices can be
easily changed to assign different boundary conditions.

If the boundary value problem defined by equations (4)
and (5) with q(x,s)=0 and t(s)=0 has only the null
solution, then the solution of the state space vector can be
given by the expression [3],

n(x,9) = [y G(x.6, G+ Hx 1) . (6)
Where,
FOX M4+ NeFOLYy Iy FE r ok o

G(x,6.8) = {_CF(S)X(M + NeFOL)~INeFOL0) 15

H(x,5) = eF X (M + NeF©L) 71 (8)

F(s)x

are called distributed transfer functions and e is the

fundamental matrix of the component.

2.4 Dynamic Stiffness Matrix of a Component

The state space vector m(x,s) can be divided into two

sub-vectors and expressed as,
T

T](X,S)=[OtT(X,S) sT(x,s)] . )
Where,

a(x,s) = [oclT(x,s) oy T (x,5) och(x,s)]T, (10)

is called displacement vector and,

snT(x,s)]T, (11)

e(x,9) =81 (x,9) &2 (x.9)

is called strain vector.

Force vector at any point along the component can then
be calculated and expressed as,

o(x,s) = Ee(x,s) . (12)

Where, E is a given constitutive matrix.
Correspondingly, force vectors at two ends of the
component can be calculated by equation (12) and
expressed as

5(0,s)| [EHg0(0,s) EHgp(0:5) | @(0,5) | [p(0.5)

o(L,s)| |EHgo(L,s) EHg (L,s) | a(L,s) e |
(13)

In equation (13), o(0,s) and o(L,s) are force vectors at

two ends of the component, o(0,s) and a(L,s) are

displacement vectors at two ends of the component.
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{EHGO(O, s) EHO‘L(O’S)} (14)

EHy(L,s) EHg (L,s)
is called the dynamic stiffness matrix and all its sub-

matrices can be calculated by using equation (8).
p(0,s) and p(L,s) are force vectors transformed

from distributed external forces.

2.5 Assembly of Components

Equation (13) gives force vectors at two nodes of a
component with respect to = corresponding
displacement vectors. Consequently, dynamic
stiffness matrices of all components can be
systematically —assembled together by using
displacement compatibility and force balance at
every connecting point to get,

K(s)x U(s) =P(s) . (15)
In equation (15), matrix K(s) is the dynamic
stiffness matrix of the multi-components structure,
U(s) the nodal displacement vector of the multi-

components structure, and P(s) is the corresponding

nodal force vector.

Equation (15) can be used to analyze modal
frequencies, mode shapes, frequency responses, time
domain responses, stresses, strains, buckling loads,
etc.

2.6 Examples

Following is an example that demonstrates the
calculation efficiency of DTFM.

EI=40 pA=0.5

1 2 3
(1) &) |

oS S

[ ©) 5
4 5 6

EI=50  pA=035

Figure 4. A system with two elastically coupled
beams

Figure 4 gives a system that is composed of two
beams elastically coupled by two springs. Using
DTFM, these two beams are decomposed into four
components with six nodes as indicated in Figure 4.
Due to the six given boundary conditions
(displacements at node 1 and 6 are fixed, rotations at
node 1 and 6 are fixed, force moments on node 3 and

4 are zero), this system is represented by six unknowns
(displacements at nodes 2, 3, 4, 5, and rotations at nodes 2
and 5). As a result, DTFM only deals with a six by six
matrix to get the closed form solutions for this system.

Table 1. Resonant frequencies of the two elastically
coupled beam system

Mode DTFM FEM FEM FEM
6*6 18 34 66

number matrix Elements | Elements | Elements
1 16.3 16.3 16.3 16.3
2 41.0 41.1 41.0 41.0
3 54.6 53.1 54.2 54.5
4 79.2 77.8 78.9 79.1
5 144.7 138.3 143.1 1443
6 157.0 150.5 155.4 156.6
7 273.9 258.1 269.9 272.9
8 305.2 288.2 289.9 304.1
9 448.7 4154 440.4 446.6
10 500.5 463.9 491.2 498.1
11 669.1 601.7 653.7 665.3
12 747.5 672.7 730.5 743.3

Table 1 gives first twelve resonant frequencies of this
system calculated by both DTFM and FEM. The second
column gives frequencies calculated by DTFM. The
third, forth, and fifth columns give frequencies calculated
by FEM with 18 elements, 34 elements, and 66 elements
correspondingly. By comparing results of the twelfth
frequency, one can see that at least 66 elements are
needed by FEM to get a reasonable result.

Instead of one-dimensional components, DTFM can be
further developed to Distributed Transfer Function Strip
Method (DTFSM) [6] to address two-dimensional
components with semi-exact solutions. An example is
given here without going through all the derivations to
demonstrate the computational efficiency of DTFSM.

DTFSM FEM
Applied Load Applied Load

{ v

Strip Buckling Element | Buckling
Number Force Number Force
2 381.28 54 1269.6
4 381.28 218 3933
6 381.28 864 386.8
8 381.28 3456 3814

Figure 5. DTFSM modeling versus FEM

4

American Institute of Aeronautics and Astronautics



Figure 5 shows the buckling analysis of a thin-walled
cylinder using both DTFSM and FEM. From figure
5 one can see that the DTFSM with only two strips
yielded very accurate result. However, FEM required
at least 864 elements to get a reasonable result and
3456 elements to get an accuracy result.

3. Optimization for Gossamer Structures

Because the DTFM can mathematically describe
distributed damping and dampers [7] with high
computational efficiency, it can be employed to
perform optimization studies in the sense of
engineering. This section gives an example.

(b)
Figure 6. Three-meters inflatable reflectarray
antenna

Figure 6 shows a three-meters inflatable reflectarray
antenna. Figure 6(a) is the antenna in stowed status
and 6(b) is the antenna in deployed status. The
supporting structure of the antenna is composed of
two inflatable/self-rigidizable booms and two rigid
beams. A single layer RF membrane is attached to
the supporting structure. Inflatable booms can be
flattened and both inflatable booms and the
membrane can be rolled-up onto one of the rigid
beams [8]. However, the structure of the antenna is
relatively large and flimsy. The dynamic response of

the antenna to the excitation induced by spacecraft
maneuvering is a big challenge.

One of the tasks of this project is to embed damping
materials along distributed components and install
dampers at several places to reduce the magnitude of the
response. In order to minimize the mass penalty of
damping material and maximize the damping efficiency,
where to place damping material and how much damping
material should be used is an optimization problem. Even
though it is not impossible, to use a commercial FE
software to conduct this study is not an easy job. DTFM
is perfectly suitable for this study. Several possible ways
of adding damping materials will be proposed. The
response reduction of each way as a function of frequency
will be analyzed using DTFM. A decision will then be
made based on these analysis results as well as weights of
damping material.

4. Sensitivity Analyses of Gossamer Structures with
DTFM

4.1 The Process of the Sensitivity Analysis

Basic building blocks of most gossamer structures are
long booms. The sensitivity of a boom to the material and
geometrical imperfections is always a challenging
problem to engineers. Figure 7 is the buckling test set up
of a five-meter long Spring Tape Reinforced Aluminum
Laminate (STRAL) Boom.

Figure 7. The buckling test scene of an
inflatable/rigidizable boom

The STRAL boom is an ultra-light weight and heavy-duty
inflatable/self-rigidizable boom [9]. It can withstand 167
Ibs of axial buckling load with simply supported boundary
conditions on both ends. The weight of the boom is only
2 Ibs. The boom is rigidizable, that means pressure is not
required to keep its rigidity after it is inflation deployed.
The boom is also self-rigidizable, that means the boom
does not need any space power or mean to get the rigidity
after it is inflated. However, during a series of buckling
tests, it is found that the buckling load varied from 118 Ibs
to 167 Ibs. Because the failure mode is Eular buckle, the
variation is believed to be caused by eccentricity of the
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boom centerline and the deviations of bending
stiffness along the boom.

In order to investigate the sensitivity of the buckling
load to the eccentricity of the boom centerline and the
deviation of bending stiffness, a DTFM based
analysis process is being developed and presented as
following.

Buckling analysis of a boom can be described by the
differential equation,

d’ d’ d
—T[El—w(x)j+P 3

2
= o 7w(x)=0. (15)
Equation (15) belongs to the category defined by
equation (1). However, due to the reason that the
bending stiffness (EI) is not a constant along the
boom, equation (6) cannot be directly employed.
There are several ways to handle a non-uniformly
distributed component with DTFM. Stepwise
uniform is the most efficiency way [4] and is used by
this study.

A non-uniform distributed component is first divided
into a number of tiny sections and each section is

considered to be uniform. Assuming sections Sy

and Sy are interconnected at point X, state
space vector on section Sy at point x; is given as,
u, ()
Nk (x)= ( ] s (16)
& (x)

where uy (x) is the displacement vector and € (x,s)
is the strain vector. The corresponding force vector
can be given as
0, () = E, (g, (). (17)
Considering the force balance and displacement
compatibility at point X, , the state space vector on
section Sy atpoint Xj can be calculated as,
Mt (%) = T M (%) - (18)
Where,
T L 0 cre (19)
= € .
f Lo BLE
In equation (19), I matrix is an identity matrix.

On the other hand, equations (7) and (8) can be
rewritten as,

G(x,@:{ HOOME™(E), — E<x
CHEONOL)O' ), £>x
and H(x) = B(x)(M + NO(L)) " . @1)

In equations (20) and (21), the fundamental matrix
®(x) can be approximately expressed as [4],

q)(X) ~ q)(x) = eFkﬂ(X—Xk)TkeFk (xk‘Xk-l)".Tzer(Xz‘Xl)'l"leFl(Xl) ,

X €(Xy,Xg41) - (22)

4.2 Example

The sensitivity analysis of a boom to the deviation of
bending stiffness (EI) has been conducted by this
example. The length of the inflatable/self-rigidizable
STRAL Boom in Figure 7 is 197 inches. It is obtained
from previous analysis and test that the original bending
stiffness ( El) of the boom is 656673 1b*in*2 . In order
to investigate the impact caused by the deviation of
bending stiffness, it is assumed by this example that the
bending stiffness of the boom is expressed as,

El =B (I+€x sin(XL—“)) , (23)

where L is the length of the boom. DTFM is able to
handle any kind of bending stiffness deviations, even it is
a localized deviation.

The state space vector of this example is defined as,

N =(wx) w(x) wix) wrE)t. (24)
Where w is the deflection of the boom. Based on
equation (15), the F matrix of equation (4) can be derived
as,

01 0 0
00 1 0
F=l0 0 0 1 (25)
P
EI(x)

The boundary conditions of the boom are simply
supported at both ends. That means on each end, both
deflection and bending moment equal to zero,

2
w=0,EI§—V2V=o. (26)
ox
Which is cast into,
Mn(0) + Nn(L) =0, @7
with the boundary matrices,
1 000 0 000
0 010 0000
M= , N= . (28)
0000 1 000
0000 0010
The solution of the beam is given by,
n(x) = @(x;P,e)m(0) . (29)

Where ®(x;P,¢) indicates that the fundamental matrix is
a function of the axial load P and stiffness variation €.
The ®(x;P,e) can be obtained by the method given in
(22). Substitution of (29) into (27) gives,
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(M+N®(L;P,€))n(0)=0. (30)

In order for the above homogeneous equation to have
a non-trivial solution, we must have,

det(M + N®(L;P,g)) =0. 31)

The smallest root of the characteristic equation (31)

is the critical force P (buckling load) of the non-

uniform beam.

Table 2. Bucklin force as the function of bending
stiffness deviation &

€ 0% | £2%|24% | £6% | £8% | £10%
Pcr (+ %) 167.0]169.7 {172.7]175.4[178.2| 181.1
Per(- %) 1167.0|164.2|161.21158.5]155.6| 152.8
Table 3. The rations of buckling force changing as

the function of bending stiffness deviation &
€ 0% [+£2%|{+4% | +6%|£8%

+10%

Pcr/Pery | 1.00001.017]1.034(1.051 |1.067 | 1.085

Pct/Pery | 1.0000[0.98310.966]0.949 {0.932| 0.915

Table 2 gives the buckling load as a function of & .

Table 3 gives the rations of buckling force changing

as the function of bending stiffness deviation ¢ .

From table 3 one can get following conclusions:

o Buckling force is almost a linear function of the
bending stiffness deviation ¢ .

o The percentage changing of buckling force is
less than the percentage of bending stiffness
deviation €. For example, buckling force
changes 8.5% while € changes 10%.

5. Future Research Directions

The DTFM-based analysis and its applications have
been presented. It is shown that this method is
suitable for design and development of space
gossamer structures. Some problems in modeling and
analysis of gossamer structure that are difficult, or
even impossible, to be treated by the FEM can be
readily treated by the DTFM. Because the DTFM
uses analytical solutions for components or
substructures, it can obtain accurate results with very
high computational efficiency.

Instead of many advantages of the DTFM, much

research and development effort is still needed to

make the DTFM a wuseful tool for gossamer
structures. Future research directions for the DTFM
include:

o To conduct buckling force sensitivity analysis of
an inflatable boom with respect to the
eccentricity of the centerline;

o To further develop two-dimensional components
for investigation of the sensitivity of an

inflatable boom to surface imperfections and material
imperfections;

To  develop  pre-tensioned
membrane components;

To develop the thermal analysis capability for
gossamer structures;

To investigate the dynamics of spinning space
structures such as solar sails by the DTFM; and

To combine all the capabilities in a user-friendly
package for future applications.

two-dimensional
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